Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(18): 12496-12512, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38633500

RESUMO

Assessment of the performance of linear and nonlinear regression-based methods for estimating in situ catalytic CO2 transformations employing TiO2/Cu coupled with hydrogen exfoliation graphene (HEG) has been investigated. The yield of methanol was thoroughly optimized and predicted using response surface methodology (RSM) and artificial neural network (ANN) model after rigorous experimentation and comparison. Amongst the different types of HEG loading from 10 to 40 wt%, the 30 wt% in the HEG-TiO2/Cu assisted photosynthetic catalyst was found to be successful in providing the highest conversion efficiency of methanol from CO2. The most influencing parameters, HEG dosing and inflow rate of CO2, were found to affect the conversion rate in the acidic reaction regime (at pH of 3). According to RSM and ANN, the optimum methanol yields were 36.3 mg g-1 of catalyst and 37.3 mg g-1 of catalyst, respectively. Through the comparison of performances using the least squared error analysis, the nonlinear regression-based ANN showed a better determination coefficient (overall R2 > 0.985) than the linear regression-based RSM model (overall R2 ∼ 0.97). Even though both models performed well, ANN, consisting of 9 neurons in the input and 1 hidden layer, could predict optimum results closer to RSM in terms of agreement with the experimental outcome.

2.
Environ Pollut ; 317: 120681, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36400135

RESUMO

In this work, the effectiveness of pyrite/sodium hypochlorite (FeS2/NaClO) treatment to eliminate arsenic (As) from fractured-bedrock groundwater via oxidative adsorption was evaluated. The As concentration in the tested reactors decreased sharply during the initial 5 min, as the addition of NaClO effectively increased the As removal efficiency, attaining 98.6% removal within 60 min in the presence of 0.05 M NaClO. There was no coexisting anion effect (Cl-, CO3-, HCO3-, NO3-, and F-) on the As removal capacity of FeS2/NaClO, except for the PO43- which resulted in less removal of As. X-ray spectroscopy analysis of As(III)-sorbed FeS2 surfaces revealed that a portion of As(III) was oxidized into As(V) during the adsorption process. Scanning electron microscopy-energy-dispersive spectrometer results of FeS2 exhibited the distribution of adsorbed As on the newly formed iron (oxy) hydroxide surfaces, with an As element ratio of 1.27%. A continuous flow-bed column study further demonstrated the efficiency of FeS2/NaClO treatment to lower the contamination level of As at the removal rates of 0.66-3.02 mg/L·day for 160 h. These results suggest that FeS2/NaClO treatment can be considered an effective strategy for removing As in groundwater of bedrock aquifers.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Arsênio/análise , Hipoclorito de Sódio , Poluentes Químicos da Água/análise , Ferro/química , Água Subterrânea/química , Purificação da Água/métodos , Adsorção
3.
Bioresour Technol ; 369: 128413, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36462762

RESUMO

The inherent recalcitrance of lignocellulosic biomass is a significant barrier to efficient lignocellulosic biorefinery owing to its complex structure and the presence of inhibitory components, primarily lignin. Efficient biomass pretreatment strategies are crucial for fragmentation of lignocellulosic biocomponents, increasing the surface area and solubility of cellulose fibers, and removing or extracting lignin. Conventional pretreatment methods have several disadvantages, such as high operational costs, equipment corrosion, and the generation of toxic byproducts and effluents. In recent years, many emerging single-step, multi-step, and/or combined physicochemical pretreatment regimes have been developed, which are simpler in operation, more economical, and environmentally friendly. Furthermore, many of these combined physicochemical methods improve biomass bioaccessibility and effectively fractionate ∼96 % of lignocellulosic biocomponents into cellulose, hemicellulose, and lignin, thereby allowing for highly efficient lignocellulose bioconversion. This review critically discusses the emerging physicochemical pretreatment methods for efficient lignocellulose bioconversion for biofuel production to address the global energy crisis.


Assuntos
Biocombustíveis , Lignina , Lignina/química , Biomassa , Celulose , Hidrólise
4.
Bioresour Technol ; 360: 127602, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35835420

RESUMO

An inadequate lignocellulolytic capacity of a conventional anaerobic digester sludge (ADS) microbiota is the bottleneck for the maximal utilization of lignocellulose in anaerobic digestion. A well-constructed microbial consortium acclimatized to lignocellulose outperformed the ADS in terms of biogas productivity when fractionated biocomponents of rice straw were used to achieve a high methane bioconversion rate. A 33.3 % higher methane yield was obtained with the acclimatized consortium (AC) compared to that of ADS control. The dominant pair-wise link between Firmicutes (18.99-40.03 %), Bacteroidota (10.94-28.75 %), and archaeal Halobacteriota (3.59-20.57 %) phyla in the AC seed digesters indicated that the keystone members of these phyla were responsible for higher methane yield. A high abundance of syntrophic bacteria such as Proteiniphilum (1.22-5.19 %), Fermentimonas (0.71-5.31 %), Syntrophomonas (0.87-3.59 %), and their syntrophic partner Methanosarcina (4.26-18.80 %) maintained the digester stability and facilitated higher substrate-to-methane conversion in the AC seed digesters. The present combined strategy will help in boosting the 'biomass-to-methane" conversion.


Assuntos
Methanosarcina , Microbiota , Anaerobiose , Bactérias/genética , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Metabolismo dos Carboidratos , Lignina , Metano/metabolismo , Methanosarcina/metabolismo , Esgotos/microbiologia
5.
Bioresour Technol ; 360: 127521, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35760251

RESUMO

The effective fractionation of structural components of abundantly available lignocellulosic biomass is essential to unlock its full biorefinery potential. In this study, the feasibility of humic acid on the pretreatment of Kentucky bluegrass biomass in alkaline condition was assessed to separate 70.1% lignin and hydrolyzable biocomponents. The humic acid-assisted delignification followed by enzymatic saccharification yielded 0.55 g/g of reducing sugars from 7.5% (w/v) pretreated biomass loading and 16 FPU/g of cellulase. Yeast fermentation of the biomass hydrolysate produced 76.6% (w/w) ethanol, which was subsequently separated and concentrated using direct contact membrane distillation. The hydrophobic microporous flat-sheet membrane housed in a rectangular-shaped crossflow module and counter-current mode of flow of the feed (hot) and distillate (cold) streams yielded a flux of 11.6 kg EtOH/m2/24 h. A modular, compact, flexible, and eco-friendly membrane-integrated hybrid approach is used for the first time to effectively valorize Kentucky bluegrass biomass for sustainable production of biofuel.


Assuntos
Poa , Biomassa , Destilação , Etanol/química , Estudos de Viabilidade , Fermentação , Substâncias Húmicas , Hidrólise , Kentucky , Lignina/química , Poa/metabolismo , Saccharomyces cerevisiae/metabolismo
6.
Bioresour Technol ; 351: 127034, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35314307

RESUMO

Effective fractionation of lignocellulosic biocomponents of lignocellulosic biomass can increase its utilization in anaerobic digestion for high yield biomethane production. A hydrothermal process was optimized and integrated with a deep eutectic solvent (DES) pretreatment to preferentially fractionate hemicellulose, cellulose, and lignin in rice straw. The optimized hydrothermal process resulted in 96% hemicellulose solubilization at moderately low combined pretreatment severity (log S = 2.26), allowing increased hemicellulosic sugar recovery with minimal formation of inhibitory byproducts. Subsequent DES pretreatment resulted in highly bioaccessible cellulosic pulp, removing 81.3% of lignin that can be recovered and converted into value-added products. Anaerobic digestion of hemicellulosic fraction and cellulosic pulp using a microbial methanogenic consortium seed acclimatized to the lignocellulosic inhibitors resulted in a 33.4% higher yield of methane (467.84 mL g-1 VSinitial) than with anaerobic digester sludge seed. This integrated approach can facilitate and maximize the targeted utilization of different biocomponents through sustainable biorefining.


Assuntos
Solventes Eutéticos Profundos , Lignina , Anaerobiose , Biomassa , Hidrólise , Lignina/metabolismo , Metano
7.
Bioresour Technol ; 346: 126591, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34929325

RESUMO

Effective pretreatment of lignocellulosic biomass (LCB) is one of the most important steps in biorefinery, ensuring the quality and commercial viability of the overall bioprocess. Lignin recalcitrance in LCB is a major bottleneck in biological conversion as the polymerization of lignin with hemicellulose hinders enzyme accessibility and further bioconversion to fuels and chemicals. Therefore, there is a need to delignify LCB to ease further bioprocessing. The efficiency of delignification, quality and quantity of the desired products, and generation of inhibitors depend upon the type of pretreatment employed. This review summarizes different single and integrated physicochemical pretreatments for delignification. Additionally, conditions required for effective delignification and the advantages and drawbacks of each method were evaluated. Advances in overcoming the recalcitrance of residual lignin to saccharification and the methods to recover lignin after delignification are also discussed. Efficient lignin recovery and valorization strategies provide an avenue for the sustainable lignocellulose biorefinery.


Assuntos
Lignina , Biomassa , Hidrólise
8.
Trends Microbiol ; 30(1): 6-9, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34610897

RESUMO

Bioaugmenting lignocellulose digestion with potent lignocellulolytic microbiomes (LMs) facilitates efficient biomethanation. Assessing the metabolic roles of microbial communities of the LMs and their complex interactions with the indigenous anaerobic digester microbiome is pivotal in implementing bioaugmentation. Multiple meta-omics are the frontline approaches to investigating gene functions, metabolic roles, and the ecological niches of LMs.


Assuntos
Lignina , Microbiota , Anaerobiose , Lignina/metabolismo
9.
Bioresour Technol ; 340: 125651, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34333346

RESUMO

The commercial feasibility of energy-efficient conversion of highly concentrated microalgal suspensions to produce high-titer biofuels is a major bottleneck due to high energy consumption. Herein, high-titer biofuels (bioethanol, higher-alcohols, and biodiesel) were generated from carbohydrate-rich Chlamydomonas mexicana and lipid-rich Chlamydomonas pitschmannii biomass through energy-saving microwave pretreatment, successive fermentation, and transesterification. Microwave pretreatment needed low specific energy (4.2 MJ/kg) for 100 g/L of microalgal suspension. Proposed sustainable integrated pretreatments method achieved unprecedented total conversion efficiency (67%) and highest biomass utilization (87%) of C. pitschmannii (100 g/L) with high yields of bioethanol (0.48 g-ethanol/g-carbohydrates), higher-alcohols (0.44 g-higher-alcohols/g-proteins), and biodiesel (0.90 g-biodiesel/g-lipids). Transmission electron microscopy showed the changes in the microalgal cellular integrity before and after sequential fermentations. Energy-efficient integrated pretreatments enhanced the extraction efficiency and whole utilization of high-concentration microalgae to generate high-titer biofuels with minimum waste production.


Assuntos
Microalgas , Biocombustíveis , Biomassa , Esterificação , Lipídeos
10.
Bioresour Technol ; 332: 125123, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33862385

RESUMO

This study determines the optimum food waste (FW) loading in an anaerobic digester for methane production. Interrelation between the degradation mechanism and microbial community composition was assessed through in-depth metabolic pathway analysis and gene quantification. Higher methane production and short lag phase were observed in the FW reactors with low substrate loadings (<4% v/v) while extended lag phase and incomplete substrate utilization were observed in the reactors fed with higher substrates (>6% v/v). The long-chain fatty acids (LCFAs) degradation was influenced by initial FW loading, and up to 99% LCFA degradation occurred at 4% FW reactor. The addition of 8 to 10% FW substrate inhibited methanogenesis due to the accumulation of volatile fatty acids (VFA) and low LCFA degradation. Under optimal conditions of substrate loading, Methanosaeta and Methanosarcina were abundant, indicating their role in methanogenesis and syntrophic acetogenesis, along with enhanced metabolic pathways specific for carbohydrate and lipid metabolism.


Assuntos
Microbiota , Eliminação de Resíduos , Anaerobiose , Reatores Biológicos , Carboidratos , Alimentos , Metabolismo dos Lipídeos , Metano
11.
Sci Total Environ ; 764: 144219, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33421748

RESUMO

Acidification during anaerobic digestion (AD) due to organic overloading is one of the major reasons for process failures and decreased methane productivity in anaerobic digesters. Process failures can cause the anaerobic digesters to stall completely, prolong the digester recovery period, and inflict an increased operational cost on wastewater treatment plants and adverse impacts on the environment. This study investigated the efficacy of bioaugmentation by using acclimatized microbial consortium (AC) in recovering anaerobic digesters stalled due to acidosis. Overloading of digesters with food waste leachate (FWL) led to the accumulation of volatile fatty acids (11.30 g L-1) and a drop in pH (4.67), which resulted in process failure and a 22-fold decline in cumulative methane production compared to that in the initial phase. In the failure phase, the syntrophic and methanogenic activities of the anaerobic digester microbiota were disrupted by a significant decrease in the abundance of syntrophic populations such as Syntrophomonas, Syntrophorhabdus, Sedimentibacter, and Levilinea, and the phylum Euryarchaeota. Bioaugmentation of the failed digesters by adding AC along with the adjustment of pH resulted in the prompt recovery of methane productivity with a 15.7-fold higher yield than that in unaugmented control. The abundance of syntrophic bacteria Syntrophomonas and phylum Euryarchaeota significantly increased by 29- and 17-fold in the recovered digesters, respectively, which showed significant positive correlations with methane productivity. Methanosarcina and acetoclastic Methanosaeta played a major role in the recovery of the digesters; they were later replaced by hydrogenotrophic Methanoculleus. The increase in the abundance of genes associated with biomethanation contributed to digester recovery, according to the functional annotation of 16S rDNA amplicon data. Thus, bioaugmentation with AC could be a viable solution to recover digesters experiencing process failure due to organic overloading.


Assuntos
Metano , Eliminação de Resíduos , Anaerobiose , Reatores Biológicos , Alimentos , Consórcios Microbianos
12.
Trends Microbiol ; 28(12): 968-984, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33171105

RESUMO

Biomethanation through anaerobic digestion (AD) is the most reliable energy harvesting process to achieve waste-to-energy. Microbial communities, including hydrolytic and fermentative bacteria, syntrophic bacteria, and methanogenic archaea, and their interspecies symbioses allow complex metabolisms for the volumetric reduction of organic waste in AD. However, heterogeneity in organic waste induces community shifts in conventional anaerobic digesters treating sewage sludge at wastewater treatment plants globally. Assessing the metabolic roles of individual microbial species in syntrophic communities remains a challenge, but such information has important implications for microbially enhanced energy recovery. This review focuses on the alterations in digester microbiome and intricate interspecies networks during substrate variation, symbiosis among the populations, and their implications for biomethanation to aid stable operation in real-scale digesters.


Assuntos
Microbiota/fisiologia , Simbiose/fisiologia , Anaerobiose , Archaea/fisiologia , Bactérias , Fenômenos Fisiológicos Bacterianos , Reatores Biológicos/microbiologia , Fermentação , Lipídeos , Redes e Vias Metabólicas , Polissacarídeos , Esgotos/microbiologia , Eliminação de Resíduos Líquidos , Águas Residuárias , Purificação da Água
13.
Bioresour Technol ; 309: 123333, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32305842

RESUMO

The physiological properties, including biochemical composition and cell wall thickness, of microalgal species have a remarkable effect on the pretreatment of biomass and its further conversion to biofuels. In the present study, multiple biofuels (bioethanol, higher alcohols (C3-C5), and biodiesel) were produced using energy-efficient microwave pretreatment, successive carbohydrate/protein fermentation, and lipid transesterification from three microalgal strains (Pseudochlorella sp., Chlamydomonas mexicana, and Chlamydomonas pitschmannii). The microwave pretreatment method required the lowest specific energy (5 MJ/kg) compared to ultrasound pretreatment. The proposed integrated approach achieved high conversion efficiency (46%) and maximum biomass utilization (93%) of C. mexicana with improved yields of bioethanol (0.46 g-ethanol/g-carbohydrates), higher alcohols (0.44 g-higher alcohols/g-proteins), and biodiesel (0.74 g-biodiesel/g-lipids). This study suggests that the application of an appropriate pretreatment method for microalgal strains having different physiological properties is essential for improving the extraction efficiency and conversion of biomass to biofuels with less waste production.


Assuntos
Microalgas , Biocombustíveis , Biomassa , Esterificação , Lipídeos
14.
Bioresour Technol ; 299: 122592, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31869631

RESUMO

Biological pretreatment of polysaccharidic wastes (PWs) is a cost-effective and environmentally friendly approach to improve the digestibility and utilization of these valuable substrates in dual-stage biohythane production. In order to reduce the prolonged incubation time and loss of carbohydrate during the pretreatment of PWs with Aspergillus fumigatus, a systematic optimization using Taguchi methodology resulted in an unprecedented recovery of soluble carbohydrates (362.84 mg g-1) within 5 days. The disruption and fragmentation of lignocellulosic structures in PWs, and possible saccharification of cellulose and hemicellulose components, increased its digestibility. A dual-stage biohythane production with pretreated PWs showed increased yield (214.13 mL g-1 VSadded), which was 56% higher than the corresponding value with the untreated PWs. This resulted in 47% higher energy recovery as biohythane in pretreated biomass compared to untreated biomass. Optimized fungal pretreatment is, therefore, an effective method to improve the digestibility of PWs and its subsequent conversion to biohythane.


Assuntos
Aspergillus fumigatus , Celulose , Biomassa , Carboidratos
15.
Ecotoxicol Environ Saf ; 180: 317-325, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31100595

RESUMO

Biodegradation of phenolic compounds in wastewater can be effectively carried out in packed bed reactors (PBRs) employing immobilized microorganisms. A low-cost, reusable immobilization matrix in PBR can provide economic advantages in large scale removal of high concentration phenol. In this study, we evaluated the efficiency and reusability of sugarcane bagasse (SCB) as a low-cost immobilization support for high strength phenol removal in recirculating upflow PBR. An isolated yeast Candida tropicalis PHB5 was immobilized onto the SCB support and packed into the reactor to assess phenol biodegradation at various influent flow rates. Scanning electron microscopy exhibited substantial cell attachment within the pith and onto the fibrous strand surface of the SCB support. The PBR showed 97% removal efficiency at the initial phenol concentration of 2400 mg L-1 and 4 mL min-1 flow rate within 54 h. Biodegradation kinetic studies revealed that the phenol biodegradation rate and biodegradation rate constant were dependent on the influent flow rate. A relatively higher rate of biodegradation (64.20 mg g-1 h-1) was found at a flow rate of 8 mL min-1, indicating rapid phenol removal in the PBR. Up to six successive batches (phenol removal >94%) were successfully applied in the PBR using an initial phenol concentration of 400-2400 mg L-1 at a flow rate of 4 mL min-1 indicating the reusability of the PBR system. The SCB-immobilized C. tropicalis could be employed as a cost-effective packing material for removal of high strength phenolic compounds in real scale PBR.


Assuntos
Reatores Biológicos/microbiologia , Candida tropicalis/metabolismo , Células Imobilizadas/metabolismo , Celulose/química , Fenol/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Cinética , Saccharum/química , Águas Residuárias/química
16.
World J Microbiol Biotechnol ; 33(5): 90, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28390015

RESUMO

The present research was conducted to define the approaches for enhanced production of rapamycin (Rap) by Streptomyces hygroscopicus microbial type culture collection (MTCC) 4003. Both physical mutagenesis by ultraviolet ray (UV) and chemical mutagenesis by N-methyl-N-nitro-N-nitrosoguanidine (NTG) have been applied successfully for the improvement of Rap production. Enhancing Rap yield by novel sequential UV mutagenesis technique followed by fermentation gives a significant difference in getting economically scalable amount of this industrially important macrolide compound. Mutant obtained through NTG mutagenesis (NTG-30-27) was found to be superior to others as it initially produced 67% higher Rap than wild type. Statistical optimization of nutritional and physiochemical parameters was carried out to find out most influential factors responsible for enhanced Rap yield by NTG-30-27 which was performed using Taguchi orthogonal array approach. Around 72% enhanced production was achieved with nutritional factors at their assigned level at 23 °C, 120 rpm and pH 7.6. Results were analysed in triplicate basis where validation and purification was carried out using high performance liquid chromatography. Stability study and potency of extracted Rap was supported by turbidimetric assay taking Candida albicans MTCC 227 as test organism.


Assuntos
Mutagênese , Sirolimo/metabolismo , Streptomyces/genética , Fermentação , Microbiologia Industrial , Metilnitronitrosoguanidina/farmacologia , Streptomyces/efeitos dos fármacos , Streptomyces/metabolismo , Raios Ultravioleta
17.
3 Biotech ; 4(5): 523-531, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28324387

RESUMO

Research work was carried out to describe the kinetics of cell growth, substrate consumption and product formation in batch fermentation of rapamycin using shake flask as well as laboratory-scale fermentor. Fructose was used as the sole carbon source in the fermentation media. Optimization of fermentation parameters and reliable mathematical models were used for the maximum production of rapamycin from Streptomyces hygroscopicus MTCC 4003. The experimental data for microbial production of rapamycin fitted well with the proposed mathematical models. Kinetic parameters were evaluated using best fit unstructured models, viz. Andrew's model, Monod model, Yano model, Aiba model. Andrew's model showed a comparatively better R2 value (0.9849) among all tested models. The values of maximum specific growth rate (µmax), saturation constant (KS), inhibition constant (Ki), and growth yield coefficient (YX/S) were found to be 0.008 (h-1), 2.835 (g/L), 0.0738 (g/L), and 0.1708 (g g-1), respectively. The optimum production of rapamycin was obtained at 300 rpm agitation and 1 vvm aeration rate in the fermentor. The final production of rapamycin in shake flask was 539 mg/L. Rapamycin titer found in bioreactor was 1,316 mg/L which is 52 % higher than the latest maximum value reported in the literature.

18.
Environ Sci Pollut Res Int ; 21(2): 1444-54, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23917743

RESUMO

A highly tolerant phenol-degrading yeast strain PHB5 was isolated from wastewater effluent of a coke oven plant and identified as Candida tropicalis based on phylogenetic analysis. Biodegradation experiments with C. tropicalis PHB5 showed that the strain was able to utilize 99.4% of 2,400 mg l(-1) phenol as sole source of carbon and energy within 48 h. Strain PHB5 was also observed to grow on 18 various aromatic hydrocarbons. Haldane model was used to fit the exponential growth data and the following kinetic parameters were obtained: µ max = 0.3407 h(-1), K S = 15.81 mg l(-1), K i = 169.0 mg l(-1) (R (2) = 0.9886). The true specific growth rate, calculated from µ max, was 0.2113. A volumetric phenol degradation rate (V max) was calculated by fitting the phenol consumption data with Gompertz model and specific degradation rate (q) was calculated from V max. The q values were fitted with Haldane model, yielding following parameters: q max = 0.2766 g g(-1) h(-1), K S ' = 2.819 mg l(-1), K i ' = 2,093 (R (2) = 0.8176). The yield factor (Y X/S ) varied between 0.185 to 0.96 g g(-1) for different initial phenol concentrations. Phenol degradation by the strain proceeded through a pathway involving production of intermediates such as catechol and cis,cis-muconic acid which were identified by enzymatic assays and HPLC analysis.


Assuntos
Candida tropicalis/fisiologia , Fenol/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Candida tropicalis/isolamento & purificação , Carbono/metabolismo , Catecóis/análise , Catecóis/metabolismo , Coque , Hidrocarbonetos Aromáticos/análise , Hidrocarbonetos Aromáticos/metabolismo , Resíduos Industriais/análise , Fenol/análise , Filogenia , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Poluentes Químicos da Água/análise
19.
Bioresour Technol ; 147: 662-666, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24034987

RESUMO

A novel white rot fungus Alternaria alternata CMERI F6 decolorized 99.99% of 600 mg/L congo red within 48 h in yeast extract-glucose medium at 25 °C, pH 5 and 150 rpm. Physicochemical parameters like carbon and nitrogen sources, temperature, pH and aeration were optimized to develop faster decolorization process. Dye decolorization rate was maximal (20.21 mg/L h) at 25 °C, pH 5, 150 rpm and 800 mg/L dye, giving 78% final decolorization efficiency. Scanning electron microscopy and X-ray Diffraction analysis revealed that the fungus become amorphous after dye adsorption. HPLC and FTIR analysis of the extracted metabolites suggested that the decolorization occurred through biosorption and biodegradation. Thermogravimetric analysis (TGA), differential thermal analysis (DTA) and acid-alkali and 70% ethanol treatment revealed the efficient dye retention capability of the fungus. The foregoing results justify the applicability of the strain in removal of congo red from textile wastewaters and their safe disposal.


Assuntos
Alternaria/metabolismo , Cor , Vermelho Congo/metabolismo , Biodegradação Ambiental , Cromatografia Líquida de Alta Pressão , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Difração de Raios X
20.
J Biosci Bioeng ; 115(1): 86-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22944201

RESUMO

An in depth process engineering study on the effect of temperature and pH on kinetic parameters of alkaline protease production by Bacillus licheniformis NCIM-2042 using starch as substrate has been reported.


Assuntos
Bacillus/metabolismo , Proteínas de Bactérias/biossíntese , Reatores Biológicos , Endopeptidases/biossíntese , Temperatura , Bacillus/enzimologia , Concentração de Íons de Hidrogênio , Cinética , Amido/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...